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Grid Discretization Based Method for Anisotropic Shortest Path 
Problem over Continuous Regions 

Zhanfeng Jia and Pravin Varaiya 

Abstract—The paper presents a method to find the shortest 
path between two points over a contuiuous region. The length 
of a path is the integral of the cost along the path. The 
cost can be anisotropic, meaning that it depends on both the 
position on the path and its direction. The method uses a 
simple rectangular grid to discretize the region, independent 
of the cost Because the cost is anisotropic, rectlinear paths 
connecting adjacent grid points may not approximate the 
optimal path. To overcome this "limlt-on-direction" problem, 
the method searches over shifted versions of the rectlinear 
paths. A Bellman-Ford style algorithm finds the best shifted 
path. Theoretical analysis and numerical experiments ensure 
effidency of the algorithm. 

I. INTRODUCTION 

The problem is to find the shortest path over region H c 
R". For a starting point x, e U, the 'length' V{x,p) of a 
continuous path p from Xs to a destination x is the integral 
of the cost fiinction c(x, v) along the path p. 

nearby grid points. The cost of a link connecting points x, y 
is taken to be 

V{x,p) = /  cip{t),p{t))dt. 
Jo 

(1) 

The path p :  [0,T] -+ T^ThEst'be conHnubusly't^ice 
differentiable;p(0) = x,,p{T) = x; and such that ||p|| = 1, 
and IIPII is bounded. We waiTra~meffi6dtIf5f findsth? Best 
path, 

V{x)=    min    V{x,p). (2) 
peP(x,,x) 

V{x) is the value Junction at x. The cost c : H x 
R" -^ (0, oo) depends on both position p{t) and velocity p. 
However, as ||p|| = 1, the cost c depends only on position 
and direction. Problem (2) is called the Anisotmpic Shortest 
Path (ASP) problem. The special case, when c(p,p) is 
independent of p, is the Isotropic Shortest Path (ISP) 
problem. 

The ASP problem arises naturally in path planning. Our 
motivation is to find paths for Unmanned Aerial Vehicles 
(UAVs) that can reach a designated target while minimizing 
the risk of detection from enemy radar. The radar signature 
of a UAV is a fiinction of its distance from the radar and 
its flight angle, so the accumulated risk faced by the UAV 
along a path can be expressed as in (I). 

One approach to ASP problem is to select a uniform 
grid of points spaced e apart, with a link between any two 
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c(x, y 
l|a:-y|| 

)x II a;-y II, (3) 

and one can use an algorithm like Dijkstra's to find the 
shortest path' across the graph. Kim and Hespanha,[l] 
show that the shortest path along the graph converges to 
"a'shbrtest continuous path as the graph is refined. For a 
two-dimensional region, the graph constructed above has 
0(e~*) vertices and 0(e~^) links, which is ineflBcient. 

Kim and Hespanha [1] propose an efficient adaptive 
sampling scheme that takes into account the characteristics 
of the cost fiinction over the region. Using a uniform grid 
is inefficient because of the "limit-on-direction" problem, 
discussed in the next section. 

The proposed method finds approximately shortest paths 
on a graph with a uniform grid. The crucial difference 
from the graph described above is tiiat there is a link only 
between adjacent vertices. Consequently, the graph is easy 
to construct, and unlike in (3) there is no need to evaluate 
the distance between pairs of point in order to select the 
links in a shortest path. The algorithm, called the Shiftable 
Segment-by-Segment Path (SSSP) algoritiim, overcomes the 
limit-on-direction problem by allowing the paths to shift 
away from the grid points. The shifts are local, so the 
shifted path is a close variant to the discrete path, and better 
approximates the desired shortest path. 

Section II provides a brief review. Section III introduces 
the segment-shifting idea and discusses how it helps to find 
the shortest continuous path.. Section IV describes the SSSP 
algorithm and analyzes its complexity. Section V presents 
numerical experiments. Section VI concludes the paper. 

II. ISOTROPIC AND ANISOTROPIC SHORTEST PATH 

PROBLEMS: RELATED WORK 

An efficient Dijkstra-like algoritiim for the Isotropic 
Shortest Path (ISP) problem was first proposed by Tsitsiklis 
[4] in 1995, and later independently proposed by Adal- 
steinsson and Sethian [2] and called tiie Fast Marching 
algoritiim. Using a uniform grid, the algoritiim mimics a 
wave front propagation. The idea comes from geomehic 
optics where a wave front propagates at different speeds 
depending on the medium which, in this case, is inversely 
proportional to the cost function at each point x.The cost 
does not depend on the direction p{t), so Problem (2) 

As C' i^'\' ^"i^^ 
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Fig. 1. Value ftinction update in the Fast Marching method: V(x) = 
vfz) + c(x) • Ien(xz), where V(z) is interpolated by the two adjacent 
points of X, and len(xz) = /i\/s* + (1 — s)^. 

simplifies to 

V(x) =    mm a     I 
M,!C)J0 

c(p(t))dt. (4) 

V{x) can be viewed as the time the wave first arrives at 
X. ITie Fast Marching algorithm strategy uses the value 
function to order the selection of grid points, similar to 
Dijkstra's algorithm, as the current smallest wave front. The 
underlying theory is the causality relationship, which states 
that the arrival time (value fiinction) V{x) at x depends 
only on the neighbors with stricdy smaller V-values. The 
proof of this statement can be found in [4]. 

Using a uniform grid and the causality relationship, the 
Fast Marching method updates the value function at a grid 
point X according only to the values of its adjacent grid 
points. Specifically, in the two dimensional case the update 
process is given by 

V(x) = min min 

+ sV{x + haiet) + (1 — s)V{x + ha2e2) ,   (5) 

where ej and 62 are the unit vectors in R^, a = (01,02) 
is an element of A = {—1,1}^, and h represents the 
discretization step (see Fig. 1). Equation (5) resembles a 
discrete approximation of the Hamilton-Jacobi (ED) equa- 
tion. 

The Fast Marching algorithm, however, fails in the 
anisotropic case, one reason being the failure of the causal- 
ity relationship on the grid, as illustrated by Sethian and 
Vladimirsky [3]. In their example, the cost function has 
an elliptic profile and is uniform across the region. The 
constant-value contours are concentric ellipses with center 
Xs, and the shortest path to any point x is the straight line 
connecting Xg and x. 

The Fast Marching algorithm cannot converge to these 
shortest paths. Suppose we want to update the value func- 
tion at point C in Fig. 2. The thick elliptic curve is a 
constant-value contour, so V(A) is larger than V(C), and 
both V{B) and V{D) are less than V(C). Given the 
causality relationship, the Fast Marching algorithm uses 
points B and D to update V(C) and omits the combination 
of points A and B. Thus, the path suggested by the 
Fast Marching algorithm can not approximate the optimal 

>\ v. A 

\ ^ c 
shortest path  .N: ̂ „ \ 
Fast Marching path  

Fig. 2. Failure of the FM method on an anisotroiMC case with elliptic 
cost profile. While the shortest path comes from between point A' and B, 
the result of FM is between point B and D. 
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Hg. 3. Limit-m-direction problem of the grid sampling. For a grid 
discretization of step h, and a neighbothood distance & = V^/i, there 
are eight neighbor points of x, implying only eight possible directions. 
The dashed circle illustrates the neighborhood area of point i. 

continuous path. Modifications of the Fast Marching method 
have been proposed to address this problem. For example, 
m [3], the update procedure considers not only the four 
adjacent points, but non-adjacent points such as A! and B', 
at the cost of larger time complexity. 

Another difficulty introduced by anisotropy comes firom 
the restriction that ||p|| is bounded. The restriction is 
reasonable in the UAV scenario, in which the UAV's ability 
to change directions is limited. But the bound leads to a 
failure of the Principle of Optimality, because a partial 
section of a shortest path may not be itself be a shortest 
path. Therefore, the value function V'(x), as a function of 
position alone does not propagate properly. One can extend 
the value function, with both position and direction as state, 
but this Fast Marching much more complicated. 

Alternative approaches to the ASP problem focus on 
paths instead of value functions. The idea is, first, to reduce 
the continuous region to a discrete graph, and then to 
compute the shortest paths across the graph. Path-oriented 
methods fit the ASP Problem (2) well because paths carry 
direction information. Moreover, path-oriented methods re- 
move the additional procedure needed to reconstruct paths 
from the value functions. 

The basic step associated with path-oriented methods is 
sampling, which reduces the region into a discrete graph. 
The simplest is (uniform) grid sampling. Unfortunately, grid 
sampling is not efficient in the sense that the number of 
vertices and edges grows very fast if we want the shortest 
discrete path to approximate both the position and direction 
of the shortest continuous path. This is because of the 
"limit-on-direction" effect. 

Remember that the discrete paths are composed of 
straight segments between sample points. Consider a two- 
dimensional grid and a small neighborhood distance 5 = 

2^ 



y/2h as in Fig. 3. The dashed circle centered at x shows 
the neighborhood of x. Denote the eight grid points in the 
neighborhood by 34 = {yi,—,ys}- Suppose only these 
eight points in ^x are available to form a segment with 
X. Then every possible segment in the grid graph has to lie 
either along grid lines (as from y2, Vi, j/s, or yr to x), or on 
diagonal lines of grids, (as from j/i, 3/3, ye, or ys to x), thus 
on one of the eight directions. The discrete paths composed 
of these segments can never approximate a continuous path 
along (say) a 30 degree line. Increasing the fineness of 
discretization or the neighborhood distance both introduce 
more directions, but cannot eliminate the limit-on-direction 
effect completely. In fact, even the random sampling works 
more efficiently than grids. 

Kim and Hespanha in [1] proposed a non-uniform sam- 
pling scheme called Honeycomb, which allows sparse sam- 
pling at areas where the gradients of the cost function 
over position and direction are both small. The Honeycomb 
scheme first generates cells whose diameters are inversely 
proportional to a linear function of the two gradients. 
The sampling points are then put on the cell border. The 
efficiency of the Honeycomb scheme comes fix)m its careful 
dependency on the cost function. 

III. SHIFTED PATHS 

We modify the discrete path based on grid discretization 
and allow the end points of the segments to shift away 
from the grid points. The shifts are local, so the shifted 
path is a close variant to the original discrete path, ^th a 
shift the segments can take virtually any directions, thereby 
overcoming the limit-on-direction problem associated with 
grid sampling. 

Recall the formulation of the path-oriented method in 
[1]. The compact region 7^ is sampled by a finite set of 
pomts X which includes the starting point Xg. The discrete 
path p{t) over X is defined to be a piecewise linear curve 
connecting a sequence of points in set X with respect to 
a given neighborhood distance S. Specifically, there is a 
sequence of points 

{xo = Xa,Xi,X2,.—iXm = x} C X (6) 

that satisfy the neighborhood condition, as in (7) below, 

llxfc -Xfc_i|| < J, Vfc e {l,2,...,m}. (7) 

The discrete path p{t) is defined as 

VfG[ffc_i,tit],A;e{l,2,...,Tn},   (8) 

where tk is defined recursively by 

to = 0,tfc = ffc_i-l-||xfc-xfc_i||, Vfce{l,2,...,m}, (9) 

and tm = T. The fcth segment of p(t), denoted by TTp^t, 
or TTfc if there is no confusion, is the part of path p(t) 
with t € [ifc,ifc+i], k e {0,l,...,m- 1}. Points Xk and 

Xfc+i are called the start point and end point of segment 
TTfc respectively. Note that \\p{t) = 1|| is assumed in the 
above definition, time is thus not important in most cases. 
It is then convinient to represent the discrete path p as 
P = \Xo = Xs,Xi,..., XTTI ^ Xj-. 

Henceforth we use grid sampling with grid size h to 
discretize the region. The discrete set X contains all points 
X 6 Tl of the form x = {xs,i + ii/i, ...,Xj,,„ -t- i„/i), 
where x, is the starting point and ii,...,t„ are integers. 
The shifted path can now be defined, starting with a discrete 
path p = {xo = x„xi, ...,Xm}, in which the Xfc's are grid 
points satisfying (7). A shifted path p with respect to p is 
defined by the shift array S = (si, ...,Sm) such that 

PS = {io,Xl,...,Xm} = {Xs,Xi + Sl, ...,Xm + Sm},  (10) 

Sfc e ft are local shifts, and Xfe e ft(xfc) := {x^+s : s e 0} 
is within the local shift area of x^. One can apply definition 
(8) to obtain the shifted path ps{t) as 

Vf G [ffc_i,tfc],fc G {l,2,...,m},   (11) 

where ik is defined recursively by 

fo = 0,4 =ffc_i-f||xfc-xfc_i||, Vfc G {l,2,...,7n}. (12) 

The local shift area fl is the /i-ball, 

n:={s:sGK",||s||<ft}. (13) 

The size of Q matches the grid size h, assuring the locality 
of the shifts. Moreover, provided that the neighborhood 
distance 6 is reasonably large, a segment of the shifted paths 
is able to take any directions as the end point of the segment 
shifts within the area of ft, thus overcoming the limit-on- 
direction problem. This property is listed as the following 
proposition. 

Proposition: Suppose the neighborhood distance 5 > 
•Jnh where n is the dimension of the region and h is the 
discretization step. Consider a segment it with the start point 
X G Af and an arbitrary direction v {v £ R", ||t;|| = 1 spans 
the surface of the unit ball). There exists a neighbor point 
2/ G 34 and a shift s 6 ft such that the end point of segment 
■K becomes y = j/ + s, and the direction of TT is same as the 
direction v. Specifically, there exists a scalar a such that 

y-x- av. (14) 

We omit the technical proof. The proposition is intuitively 
obvious if y spans a set that surrounds x completely, as 
does the surface of the unit ball centered at x. Fortunately, 
given 5 > y/nh, 34 contains all vertices of the cube of 
size h cornered at x. With ft defined in (13), the set {y = 
y-l-s:yG34,sGft} contains the surface of this /i-cube, 
therefore surrounds x completely, and thereby eliminates 
the limit-on-direction problem of the grid discretization. 
Though the definition of ft in (13) is sufficient for this 
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purpose, the set may be too large. We can take as fi the low- 
dimensional set that restricts the shift s to be perpendicular 
to the path, 

n := {s : s 6 in—1 \s\\<h,{s,p) = 0},      (15) 

and still overcome the limit-on-direction problem. Taking Q 
as in (15) reduces the number of parameters associated with 
a shift path so that the optimization procedure described 
below remains simple. 

The concept of shifted paths gives a new meaning to 
the value function of a discrete path in the context of 
grid discretization. Given a discrete path p = {xo = 
Xa,xi,...,Xm = x}, the tilde value Junction V{x,p) is 
defined by 

V(.x,p)=    ^ min       V{x,ps). (16) 

The minimization is over all local shifts of the discrete path 
p, so V{x, p) is the lowest value one can expect by choosing 
p. Therefore, even when the grid is coarse, the minimizing 
shifted path p has a good chance to closely approximate 
a shortest continuous path. As we refine the grid, the 
optimal V{x,p) will converge to the optimal solution of 
Problem (2). 

Theorem: For any A,e>Q, there exists a finite set X of 
Nt grid sampled points of "R., due to the discretization step 
h, such that for any given starting point Xs & X and any 
X£X, 

min     V(x,p)-€<V(x)<      min     F(x,p), (17) 

where Px{xg,x) contains all the discrete paths from a;, to 
X over X, A is the bound on the second derivative of the 
continuous path p, and V{x) is the value function of the 
shortest path of the Anisotropic Shortest Path problem, as 
defined in (2). 

The theorem is proved along along the same lines as 
Theorem 1 in [1]. The latter guarantees the existence of a 
finite set X of size Ne such that one can construct a discrete 
path po over X satisfying 

Vix,po)-V{x)<e. (18) 

Notice that the definition of the tilde value function in (16) 
implies V{x,po) < V{x,po), so the convergence dieorem 
holds immediately. However, this argument doesn't reveal 
how fast the number of points Ne increases, or equivalently, 
how fast h decreases, as e decreases. In the numerical 
experiments the shifted paths perform much better than the 
discrete paths, meaning that the proposed algorithm can 
work over a coarse grid with a small number of points in 
X, and yet yield paths with values close to the optimum. 

IV. ALGORITHM 

The underlying scheme of the proposed Shiftable 
Segment-by-Segment Pathing (SSSP) algorithm is the 
Bellman-Ford architechture, in which each point records 
the most promising paths and their tilde value functions 

 Xk+l 

Xk 

k+l 
1 \ 
—X  

Xk+Sk  .... -. 
Xk     Xk+Sk 

T 

Xk+l 

Rg. 4. Some examples of segments (tliick lines with arrow) and their 
baseline directions (below) when I = 3. sjt >s the shift along the giid line 
that is perpendioilar to the baseline direction. The dashed lines show the 
shifted segments. 

fix)m the starting point and tries to extend them to the 
destination through its neighbors. The paths eventually 
reach the destination and the shortest path (with the smallest 
tilde value) among them is the solution. Note that the 
recorded paths are discrete paths. To find the tilde values of 
these paths, one has to solve an optimization problem over 
the shift vector Sk for all segments irk- If a path p has m 
segments, it is an optimization problem over fl"*, which is 
obviously complicated and time consuming. We introduce a 
heuristic method to compute the tilde values approximately. 
From now on we restrict the region to a two-dimensional 
plane. According to (15), the shifts Sk's are now scalars. 

Consider the graph formed by a rectangular grid with 
only vertical and horizontal links between adjacent points. 
Let the segment TT be a group of links of up to I base links 
and 0 or 1 perpendicular link, as shown in Fig. 4. When 
Z = 1, it corresponds to the case where the neighborhood 
distance S = V2h; and / = 3 implies S = VlOh. The 
direction of the base luiks is called the baseline direction 
of the segment, while the direction the perpendicular link, 
if there is one, is called the quadrantal direction. The shift 
Sit of the start point of a segment irk is along the grid line 
that is perpendicular to the baseline direction of TT*. The 
assumption here is that the baseline direction represents the 
direction of the path. 

The main loop of the SSSP algorithm follows the 
Bellman-Ford architecture. For a graph of n = \X\ points, 
the architecture does up to n — 1 rounds over all links 
relaxing, or updating, the tilde value function (the distance 
to the starting point x,), as well as the shifted path that 
generates it This information forms a record of a point 
X & X, including the discrete path pj, the shifts 5*, and the 
corresponding tilde value fimction V*{x,p%). In practice, 
the relaxation operation is initiated by a recendy updated 
point Xfc when, from a path-oriented view, its recorded 
path pfc := p%^ = {xs,x\,...,xk-i,xk} tries to extend 
to a neighbor point Xk+i- Denote the extended path by 
Pk+i := {pjfe,a:fc+i}; the records at Xk+\ will be relaxed, 
or updated, if the tilde value of pk+i is smaller than the 
recorded V*{xk+i,Px^^^). Initialized to infinity, the tilde 
value ftinction therefore decreases with each successful 
relaxation operation. The following procedures describe the 
details of the relaxation operation of SSSP. 

1) Approximate the tilde value ftinction V{zk,Pk) of the 
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point Zk that shifts away from the grid point Xk- 
Zk = xjfe + s'^Ck is the shifted point, s^ € fi is 
the shift, and ejt is the unit vector representing the 
direction that is perpendicular to the baseline direction 
of the segment nk = {xk,Xk+i). This is the key 
computation of SSSP and we will discuss it in detail 
soon. 

2) Compute the tilde value function V{xk+i,Pk+i) of 
the extended path pk+i as 

V{xk+i,Pk+i) = mm{V{zk,Pk) 

+ \\xk+i-Zk\\-c{xk+i,Xk+i-Zk)),   (19) 

where c{x, v) is the cost function. 
3) If V{xk+i,Pk+i) < V*{xk+i,pl^_^J, *e relaxation 

operation succeeds and the record of Xfc+i is updated. 
The Bellman-Ford architecture of SSSP allows each grid 

point to keep one record of the most promismg path. How- 
ever, because of the failure of the Principle of Optimality, 
a sub-optimal path at Xk may extend to be*the best path 
at Xk+i. Therefore, it is efficient to keep multiple records 
of the most promising paths at each points. The size of the 
records doesn't need to be large. For example, when the 
number of base links of a segment is selected to be Z = 1, 
there are at most eight different choices of neighbor points. 
Therefore, each point needs to keep no more than eight 
paths, more paths make no difference. Moreover, keeping 
multiple records increases the time complexity of the al- 
gorithm. If each point keeps q records, the Bellman-Ford 
architecture will need up to q{n — 1) rounds of relaxation 
operations, so a small q is better. (In our implementation, 
we choose q = 4.) 

The bound of the second derivative of the path, A, 
enters in the following way. Due to the assumption of 
constant speed, the derivative of the speed comes from a 
direction change. Obviously, a piecewise linear trajectory 
has unbounded second-order derivative. We therefore limit 
the impact of the action of changing directions: the action. 
doesn't finish all at once; instead, it takes a small amount 
of time proportional to the time needed to traverse distance 
h. The assumption guarantees that there is enough room 
to finish the action of changing directions. Also, fine 
discretization reduces the capability to changing directions 
from one segment to another. As ||p = 1||, the angle 0 
between two consecutive segments is limited by 

4> < arccos 
(-")■ 

(20) 

Returning to step 2 of the relaxation operation, only if the 
angle between the new segment Wk and the last segment of 
the path pk satisfies this inequality, is the extension feasible. 
The corresponding shift s'^ is called a feasible shift. 

The key step in the SSSP algorithm is the computation 
of the approximate tilde value function V{zk,Pk) at the 
shifted point Zk in step 1. In the isoti-opic case this can be 
done by interpolation, as in the Fast Marching algorithm. 

Xk+I 

Fig. 5.   Extension of a shifted path. When considering the next segment 
"■fc = (xk,Xk+i), Pk shifts Zfc in a shape-preserving way. 

What we want here, however, is a path-oriented method 
that takes as an input only the shifted path Pk,Si,f given 
by the recorded discrete path pk and shifts Sk- The idea, 
roughly speaking, is to shift the path in a "shape-preserving" 
way, as shown in Fig. 5. When the end point of the path 
pk shifts fix)m Xk to a non-grid point Zk = Xk + s'^Ck, 
the trajectory of the path should shrink (or swell) in such 
a way that the resulting path keeps its original shape. By 
doing so, the directions of all the segments of the path are 
almost the same as those before the shift. We call such 
shifts shape-preserving. The shape-preserving shift results 
in a backward propagation that affects the shifts of all 
the segments, turning shifts Sk = (si,...,Sfc_i,0) uito 
Sk+i — (si + s'l,..., Sk-i + Sfc-i, S/fe)- The value function 
over the shape-preserving shifted path Pk,Sk+%_ is thus a good 
approximation of the tilde value function V{zk,Pk)- The 
collection of these values then forms a profile that is used 
to compute the minimizing shift s'^ in step 2. 

It is not necessary to complete the backward propaga- 
tion before computing the value functions of the shape- 
preserving shifted paths. We can do it recursively based on 
the knowledge of the profile of V{zk-i,Pk-i)- Let s'^_^ 
be the first-step propagation due to the shape-preserving 
shift sj.. We have Zk-i = Xk-i + (sfc-i + s'f._i)ek-i and 
Zk = xk+ s'^.ek. Thus, 

V{zk,Pk) = V{zk-i,Pk-i)+\\zk-Zk-i\\-c{xk,'^k-Zk-i)- 
(21) 

Based on the property of the shape-preserving shift, the 
propagated shift s^_i depends on s^ in one of two ways. 
The first is the proportional shift. It occurs when segments 
■Kk-i and TTit have the same baseline direction and the 
same quadrantal direction. A\^th proportional shift, sji._j = 
'"'x'.r'^fc- ^* *^ ^^ consequence of the fact that Xg, the 
start point of the first segment, never shifts. If the path turns, 
either by changing the baseline direction or the quadrantal 
direction, the propagated shift happens in a parallel manner. 
In this case tiie last segment ■nk-i retains its direction and 
s'k-i is computed accordingly. 

With the profile of the approximate tilde value function 
V{zk,Pk), the optimization problem in step 2 becomes a 
minimizing problem over a single scalar variable s^, thus 
is significantiy simplified. The profile is in a piecewise 
linear form over the inteval sj. € ft = [-1,1]. However, 
not every s'^ G [—1,1] is feasible even if it satisfies the 
direction condition (20). In the example shown in Fig. 6, 
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Fig. 6. Ofc/^fc bounds of Ihe shifts. The dotted lines show how the 
path extends in the gird oaph; the dashed lines show the shift paths; and 
the brackets show the of/O'^ bounds of the shifts, to the upper figure, 
6^/01 spans the (-1,1] interval. When the path extends to xs. as shown 
in the lower figure, Sj 's bounded by 5J < 1 from above. This is because 
the shift si of the extended path increases in the shape-preserving vray, 
and at the same time has to be less than or equal to 1. 
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Fig. 7. This figure shows how SSSP generates a loop when the path 
extends from ii to X2. then back to X3 = xi- The dotted lines show how 
the path extends in the grid graph; the dash^l lines are the shifted paths. 
The reason of generating loops is that the tilde value fimction decreases 
as the paths extend, as shown MI the right 

S2 is bounded by 0j < 1 because sx after the backward 
propagation must be within its [-1,1] intetral. We denote 
these bounds 6^/dk- ^f *^s® bounds are tight, it can be 
proven that the resulting shifted path has all shifts less than 
or equal to 1. 

The SSSP algorithm is not loop-free. Although the cost 
ftinction c[x, v) is strictly positive at all x and v, the tilde 
value fimction may decrease as the path extends. See Fig. 7 
for reference. Suppose the (isotropic) cost fimction takes 
only two values: c(x) = 10 fi)r all points to the left of xi, 
and c(x) = 1 for all points to the right. We can compute 
the tilde value functions V{xi,p{) = ^/s x 10 = 22.361, 
and V{x2,P2) = 2 x 10 + V5 = 21.414. Therefore, by 
extending the path pi to X2, the tilde value decreases by 
0.947. The decreasing tilde value implies the possibility of 
loops. In fact, remember that SSSP records multiple paths at 
each point. The multiple records also imply potential loops 
as paths extend. We definitely don't want looped paths. 
One way of preveting loops is to explicitly check the paths 
and delete those witii loops. However, the looped path is 
inherent within the shifted path context and makes sense. 
In tiie lowest part of Fig. 7, when we extend the path back 
to X3 = xi, the tilde value function of tiiat point improves 
to Vixz,pz) = 2 X10+V^ = 22.236, based on the patii pa 
with the dashed line. Therefore, though pa contains loop, 
the shifted path ps doesn't. Fortunately, ps is still achievable 
by replacing xi with Xj. Thus, the explicit loop elimination 
doesn't affect the optimality of the results. 

Unlike random sampling algorithms, which use up run- 
ning time in constinicting die graph, tiie SSSP algorithm 
spends more time on its path computation. Specifically, for 
a graph of n sample points and m links, random sampling 
algoritiims take 0{n'^) time to select links by checking 

-s- ihn p«h (SSSP) 
-«-dl9cral<i path (SSSP) 
•^r diaereto path (grid only) : 

IW*:^ f« 

X (length) 

Fig. 8. Path computation problem over a rectangular region with flat 
cost function c{x,v) — 0.1. The grid in dotted line shows the grid 
discretization of the region, s/t's are the shifts. The triangle-labeled discrete 
path shows how serious the limit-on-direction problem could be. 

the distance between the sample points, and 0{rn) time to 
compute the values of each link. The SSSP algorithm, on 
the other hand, needs 0{qmn) relaxation operations, where 
q is the number of records kept at each point of the graph. 
During each of the relaxation operation, SSSP performs 
a fixed number of computations to form a profile of the 
tilde value function V^z,^), and to find the minimizing 
shift s'. The time complexity of die SSSP algorithm is flius 
0{qmn). This is a similar expression as the time complexity 
of the random sampling algorithms. However, SSSP can 
find good paths even with a coarse grid and fewer points 
in the graph. Therefore, the running time of SSSP should 
be smaller than that of the random sampling algorithms, as 
we show in the next section. 
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Rg. 9. The typical senario and minimum-risk paths computed by two 
algorithms, (i). the proposed SSSP algorithm: 361 (19x19) points, path 
value is 358.2, running time is 2.6 sec; (ii). the uniform random sampling 
algorithm: 3000 points, path value is 375.3, running time is 74.6 sec. 

V. NUMERICAL RESULTS 

The first set of experiments illustrates the effect of 
the shift concept. Fig. 8 shows a senario where the cost 
function is 0.1 at all positions and directions. The flat 
cost function represents the simplest case of the path 
computation problem. The simple example demonstrates 
how the shiftment helps to find better paths. In Fig. 8, 
an 8-by-8 region is discretized with grid size /i = 1. We 
want to compute the shortest path from the starting point 
Xg = (0,0) to the destination point Xd = (8,6). If we 
run Dijkstra's shortest path algorithm over the grid graph, 
the triangle-labeled discrete path is the solution with path 
value being 1.4. (Actually, all the zigzag paths from Xg 
to Xd are equally the shortest path.) This obviously bad 
solution can be improved by increasing the neighborhood 
distance, which allows longer segments than those only 
between the adjacent points on grids. The improved discrete 
path is represented by the dashed line and diamond label 
in Fig. 8. The path value reduces to 1.013. The discrete 
path cannot achieve the optimum value 1.0 of the straight 
line connecting the starting and destination points, because 
of the "limit-on-direction" problem mentioned before. By 
introducing the shifted path, the segments are free to take 
different directions, thus generate the near-to-optimal path. 
The shifted path, labeled by circles with path value 1.0, is 
very close to the optimal straight line. We also display in 
Fig. 8 the amount of the shifts at the consecutive grid points 
of the discrete path. 

Wfe now apply the proposed SSSP algorithm to the com- 
putation of paths for Unmanned Air Vehicles (UAVs) that 
minimize the risk of detection (and destruction) by ground 
radars of Surface-to-Air Missile (SAM) sites. Following [1], 
finding the minimum risk path is abstracted as the ASP 
problem with cost function 

Fig. 10.     Results value functions of the SSSP algorithm and random 
sampling algorithm at different sampling rates. 

where Zi is the position of the ith radar, and 

ah 
r]{x,v,Zi) = (23) 

c{x,v) = Y^ri{x,v,Zi), (22) 

^o2-f (62_a2)cos^V 

is the risk density function, representing the probability 
of the UAV being detected by the ith SAM site. This 
probability depends on the aircraft's Radar Cross Section 
(RCS), which is a measure of its ability to reflect radar 
signals in the direction of the radar receiver. In (23), the 
RCS is an ellipse with semi-minor axis a and semi-major 
axis 6. Unlike most civilian aircrafts whose RCS is close 
to a circle, the UAVs have flat RCS with large r = h/a. 
Therefore, if ij), the angle between the moving direction v 
and the SAM site direction (x - Zi), ■q{x, v, Zi) takes the 
small value a if V" = 0 and the large value 6 when V" = 90 
degrees. 

Fig. 9 considers the senario with two long range SAM 
sites and one short range SAM. The circles show the 
effective ranges of the SAM radars. The figure also shows 
the minimum-risk paths obtained by the SSSP algorithm and 
the uniform random sampling algorithm, respectively. The 
SSSP algorithm runs over a 19x 19 grid, or 361 points and 
yields a shifted path with tilde value 358.2. The uniform 
random sampling algorithm, at the same time, runs over 
3000 randomly sampled points and yields a discrete path of 
value 375.3. Moreover, the running time of latter is nearly 
30 times slower than that of SSSP. The next two figures. 
Fig. 10 and 11, show more results of the two algorithms as 
we change the sampling rates. The SSSP algorithm keeps 
outperforming the uniform random sampling algorithm on 
both the path values and the running time. They also demon- 
strate that SSSP is able to achieve the optimal solution to 
the ASP problem with a very low sampling rate. 

VI. CONCLUSION 

We studied the problem of computing the shortest paths 
over a continuous region in this paper. The cost depends 
on both the position and direction of movement, thus form- 
ing an Anisotropic Shortest Pathing (ASP) problem. We 
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Rg. 11. Results running time of the SSSP algorithm and random sampling 
algorithm at different sampling rates. 

proposed a Shiftable Segmcnt-by-Segment Pathing (SSSP) 
algorithm that has the following features. 

First, SSSP uses rectangular grid to discretize the region. 
Compared with other sampling schemes, the grid graph is 
easy to construct and is independent of the cost function. 
Second, the SSSP algorithm uses a Belhnan-Fbrd architec- 
ture to perform a breadth-first search. Each point of the 
graph keeps multiple records of most promising paths to 
assure the optimality of the result. The third feature is the 
introduction of shifted paths, which allow the discrete paths 
to shift away from the grid points, thereby overcoming the 
limit-on-direction problem that arises in grid discretization. 
The last feature is the heuristic to compute the tilde value 
function V{x,p\. By constructing the profile of the tilde 
value functions V{z,p) over the shifted points z, we replace 
the optimization problem over all shifts to the simpler one 
over only the last shift of die path. The key technique of the 
heuristic is the shape-preserving shift, which decides how 
the shifted path changes when the end point shifts. 

These features of SSSP woric together and lead to an 
efficient algorithm. The tfieoretical analysis says that the 
SSSP algoridim has a similar time complexity as the ran- 
dom sampling algorithms. The numerical experiments, on 
die odier hand, show that SSSP outperforms die uniform 
random sampling algorithm on both the path values and the 
running time. 

Although we described and implemented the SSSP algo- 
rithm for two-dimensional regions, it is easy to generalize 
the algorithm to higher dimensional spaces. The major 
modifications focus on the local shift area ft, the shifts SkS 
and the computation of the profile of V(z,p). For example, 
in a three-dimensional space, the shift is restricted within a 
small two dimensional plane, n(x), around the grid point 
X. Of course, the algorithm will need more computations to 
construct the profile of V{z,p) over n(x). 
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